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I t  is shown tha t  the reliability of a unit  cell, obtained by indexing a powder pattern, depends on 
the ratio of the actual discrepancies to the average discrepancies A which would result from an 
arbitrary unit  cell of the same Bravais type and of about the same size. Expressions for A, for all 
non-cubic Bravais types of lattice, are derived from statistical considerations based on the number of 
calculated lines below a given Bragg angle. 

1. Introduction 

The question often arises whether  a par t icular  indexing 
of a given powder pa t t e rn  is correct. In  the present  
paper  we shall a t t ack  this question from the other  
side, namely  by t ry ing  to judge whether  mere chance 
could be responsible for the  apparen t  success. The 
ideal answer would be to calculate the probabi l i ty  of 
t h a t  hypothesis.  As we shall see, such a calculation, 
if possible, would be ra ther  complicated. However,  
a good deal of informat ion  on the  significance of the  
proposed uni t  cell can be obta ined by comparing 
the actual  discrepancies with the average discrepancies 
which could be expected if it  were wrong. 

To this end, we shall derive expressions for some 
quant i t ies  related to a sequence of calculated line 
positions. 

2. Calculated number of lines 

This number ,  N, is a funct ion of the max imum Bragg 
angle, which we shall characterize by the corresponding 
radius r in reciprocal space. Apar t  from the obvious 
te rm in r 3, N may  also contain terms of lower degree 
in r. 0 n l y  the quadrat ic  addi t ional  term will be 
considered here, since the l inear and constant  terms 
are comparable in magni tude  with the  f luctuat ions of 
N around the smooth functions present ly  to be 
derived. These f luctuat ions are surprisingly small 
provided the reciprocal axes a*, b* and c* have the  
same order of magni tude.  The final results are s ta ted 
in Table 1, expressed as coefficients in 

N=r2(Cor +Cla* +Cgb* +C3c*)./V *, (1) 

where V* is the volume of the reciprocal uni t  cell, 
or, with Q=r 2 (cf. Section 3): 

N=Q(CoVQ+Cla* +C2b* +C3c*)/V*. (la) 

Triclinic. N is equal to half the  number  of reciprocal 
lat t ice points  wi thin  a sphere, hence 

N = ~ ~r~/V*. 

Monoclinic primitive. N is ha l f  the above value, 
plus half  the number  of hO1 points :  

N l~r~/V* + ½.½~r2/a*c* sin/3 

from which the final formula  follows with C2 = [:r. 
Orthorhombic and centered lattices. A similar reason- 

ing is followed. Centering of a given lat t ice causes a 
reduct ion of the  poin t  densi ty  in reciprocal space. 
The same reduct ion occurs in the mirror  plane(s) of 
the reciprocal lattice. Hence the appropr ia te  reduct ion 
factor applies to all coefficients of N in (1). 

Tetragonal. The number  of points of a square net  
with uni t  period, lying within a circle with radius l/p, 
is 7~p. This leads to the supposit ion t ha t  the  number  n 
of integers < p which can be wri t ten  as a sum of two 
squares, is ls7~ p. However,  ma ny  pairs (h, k), with 
h < k, give identical  values of h 2 + k 2. If (h 2 + k2)-values 
are supposed to be dis t r ibuted at  random over all 
integers, the  densi ty  dn/dp of sums of two squares 
would be 

1 - e x p  ( -  ~:r)=0.325 

instead of -~-:r=0.393. Moreover, a term in I/P can be 
expected in n. I t  turns  out  t ha t  the equat ion  

Table 1. Coefficients in (1) for various Bravais types of lattice 

Bravais type Unique axis C o C 1 C2 C3 
Triclinie - -  2.095 0 0 0 
Monoclinic P b 1.047 0 0.786 0 
Orthorhombic P - -  0.524 0.393 0.393 0.393 
Tetragonal P c 0.214 0.786 0 0.160 
Hexagonal c 0.150 0.681 0 0.113 
Rhombohedral (hex. axes) .c 0.050 0.227 0 0.038 
C-centered,/-centered multiply each C by ½ 
F-centered multiply each C by 
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n = 0 . 3 2 p +  [/p (2) 

holds with astonishing accuracy up to p = 400 (Table 2). 

The da ta  in Table 2 were derived from the Interna- 
tional Tables for X- ray  Crystallography (1959). 

Table 2. Number n or m of integers < p which can be 
written as h e + k e or as h a + k e + hk, respectively 

n m 

^ 

p "Actual Eq. (2)" "Actual Eq. (3)" 
20 11 10.9 9 9.7 
40 19 19.1 17 16.7 
60 27 27.0 22 23.3 
80 34 34-5 30 29.7 

100 42 42.0 35 36.0 
200 78 78.2 66 66.2 
300 113 113.3 92 95.3 
400 144 148.0 121 124.0 
500 176 182.4 148 152.4 
700 239 250.4 199 208.4 
900 298 318.0 250 264.0 

This good fi t  is, however, completely fortuitous, 
because we disregarded the absence of integers of the 
form 4 i - 1  in the series of values of h e + k  2. Hence 
the number  of coincidences has been underes t imated;  
a precise computat ion yields dn/dp=0.298 instead of 
0.32 as the asymptot ica l  value. This is corroborated 
by  the behaviour  of n for large values of p. 

For the calculation of N, we shall  use (2) since 
M + k ~ will seldom exceed 400. The tetragonal  latt ice 
will be compared wi th  an  orthorhombie one with 
almost  the same uni t  cell. Both  reciprocal lattices 
will be considered layerwise ( l=0 ,  1, . . . ) .  I n  the 
or thorhombic lattice, each layer  is responsible for 

diffraction lines, where [/p is the radius of the l imit ing 
circle in tha t  layer,  divided by a*. For the tetragonal  
lattice, the number  of lines for a given layer  is given 
by  (2), p being the same. The term [/p, in the ortho- 
rhombie  case, leads to the coefficient C1 + C2 for a ( ~  b) 
in (1). Hence in the tetragonal  case, this coefficient is 
the same as CI+Ce in the orthorhombic expression, 
whereas Co and  Ca are smaller by  a factor 0.32/¼~-- 
0.407. 

Hexagonal: Again a 'semi-empirical '  formula  ob- 
ta ins  for the number  m of integers < p which can be 
wri t ten as h 9" + k 9 + hk : 

m=O'Z V+ 1/V (3) 
provided p is not  too large (Table 2). The asymptot ica l  
densi ty  is not  0 . 2 6 - - 1 - e x p  ( - g / 6 [ / 3 )  but  smaller  
(0.238) owing to the fact tha t  these integers never  
have the form 3 / - 1 .  Again, this is confirmed for 
large p. The f inal  N-formula follows from comparison 
with a pseudotetragonal  latt ice with the same a* and c* 
and  a reciprocal cell volume 2/[/3 t imes the actual  V*. 
Hence all coefficients are smaller  than  in the ortho- 
rhombic  case by  ½[/3, and  Co and  Ca by  a fur ther  
factor 0 .26 /¼~-  0.331. 

3. Distribution of intervals between 
calculated lines 

The te rm 'dis t r ibut ion '  is used here in the  sense of 
a frequency distr ibution.  I t  refers, not  to the collection 
of all  intervals  of a sequence of calculated lines for 
a given uni t  cell, bu t  to the intervals  s i tuated at, 
or close to, a given Bragg angle. The collection would 
thus  be very  small  if only one uni t  cell were considered. 
However, by  varying  the cell constants somewhat,  
a sufficiently large collection can be defined. The 
individual  f luctuat ions of intervals  for any  given uni t  
cell, corresponding to the f luctuat ions of the actual  N 
with respect to its average given by  (1), will be 
sufficiently random in this collection to permit  statis- 
t ical  considerations. These will be used to predict  the  
in terval  length to be expected at a given angle for a 
given uni t  cell, without  actual ly  calculating all possible 
line positions near  this angle. 

As usual, we shall  express l ine positions by  Q, 
which m a y  be the recent ly recommended Q=lOa/d e 
(Tables of Q, 1959) or any  other quan t i ty  proport ional  
to sin e 0. The reciprocal quanti t ies  used before must  
be expressed in such units  tha t  Q = r  ~, Qloo=a .2 etc. 

Table 3. Cumulative distribution of 214 intervals 
(cf. Section 3) 

Number of intervals > x -  ½ 

x Actu~ 214 exp { -  (x-  ½)[18.8} 
5 180 170 

10 141 129 
15 107 99 
20 77 76 
25 59 58 
30 42 44 
35 29 34 
40 22 26 
45 19 20 
50 13 15 
60 9 9 
75 2 1 

100 1 1 

The main  parameter  of the in terval  dis t r ibut ion is, 
of course, the average in terval  between successive 
Q-values, in the sense indicated above. I t  follows t ha t  
tki~ interval ,  which we ~hall c~ll 2/1, is 

2A = d Q / d N =  2r/(dN/dr) 

= V*/(-~CoVQ+Cla*+C2b*+Csc*).  (4) 

If the intervals  were dis t r ibuted exponent ia l ly  as 
free pa th  lengths of gas molecules, this  would be the  
only parameter .  There is indeed l i t t le reason to 
believe tha t  a different dis t r ibut ion obtains. By  way  
of example,  we choose a two-dimensional anorthie  net.  
For this case 2A --- (a'b* sin ?) /1~ is independent  of Q, 
so tha t  the collection of 214 successive intervals  for 
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this special lat t ice (Q = 23h 2 + 38k 2 + 4h/c) can be re- 
garded as representa t ive  of a collection of the  k ind  
defined above. The cumulat ive  dis t r ibut ion is shown 
in Table 3. In  the last  column, the theoret ical  f requency 
e x p - ( x / 2 / 1 )  for intervals  larger t h a n  x is listed, 
where for this case 2/1 = (23 x 3 8 - 4 ) ½ / ½ z =  18.8. There 
appears to be a slight devia t ion towards a narrower 
dis t r ibut ion,  indicat ing t h a t  the  Q's are more 'reg- 
u lar ly '  spaced t h a n  points chosen at  random (cf. next  
section). 

4. A v e r a g e  d i s c r e p a n c y  

We are now in a posit ion to examine the  discrepancy 
to be expected between a given observed line and  the  
calculated line which is closest to it. Since we want  to 
ascertain what  the  chances are for a par t icular  uni t  
cell to be only apparen t ly  the  r ight  one, we must  
for the  moment  assume t h a t  it  is wrong. The posit ion 
of the  observed line can then  be supposed to be 
unre la ted  to the  sequence of calculated lines and the  
average discrepancy is unre la ted  to the  accuracy 
ei ther  of the  line posit ion or of the  cell constants,  
but  only to the in terval  d is t r ibut ion of calculated lines 
a t  the  posit ion of the observed line. 

Under  these conditions, and assuming t h a t  distribu- 
t ion to be exponential ,  the  average discrepancy g is 
half  the average in terva l  and  thus equal to A: 

g=A=½V*/(a2CoVQ+Cla*+C2b*+Csc*) (5) 

because the discrepancy is evenly dis t r ibuted between 
zero and  half  the  length of the in terval  in which the  
observed line is s i tuated,  whereas the  condit ional  
average length of t ha t  in terval  is 4 / I . t  

Moreover, the  dis t r ibut ion of discrepancies for a 
certain observed line is easily demons t ra ted  to be 
exponent ia l  as well, so discrepancies larger t h a n  x 
will occur with the frequency exp [ -x /A] .  

A non-exponent ia l  d is t r ibut ion of intervals  can be 
expected in par t icular  for uni t  cells of high symmetry ,  
where successive calculated Q's may  be somewhat  
more regularly spaced. This will no t  influence the  
average in terval  2/1, but  i t  will make g < / 1 ;  e.g. for 
the  extreme case of equidis tant  Q's, g= ½/1. Therefore, 
by  supposing an exponent ia l  dis tr ibut ion,  the  reli- 
abi l i ty  of the  assumed uni t  cell can only be over- 
est imated.  In  the following sections we shall ident i fy  
g with /1. 

~f Statistically, the observed line cannot be distinguished 
from the surrounding calculated lines. Hence each of the 
two parts in which it divides the interval in question is itself 
equivalent to an arbitrary interval, averaging 2A. Indeed, 
the whole interval is not arbitrary because large intervals are 
more likely to contain observed lines than small ones. 

This 'Wegl/~ngenparadox' was solved originally for a 
sequence of points distributed at random on a line. The 
sequence of Q-values is not random ; there is a very pronounced 
negative correlation between neighbouring interval lengths. 
However, the above conclusions are independent from such 
a correlation. 

5. Example; discussion 

By way of i l lustrat ion,  a recent ly  published indexing 
of the pa t t e rn  of an  a luminium or thoarsenate  (Sharan, 
1959) will be analyzed. The quadrat ic  form proposed 
by  this au thor  is 

104 sine 0 = Q = 50h 2 + 74/c2 + 88/2. 

Applying the  expression for N for an or thorhombic  
lattice, we find 

N = Q(0.00092 I/Q + 0.0173); 

e.g. N - - l 1 7  for Q - 2 0 0 0  and N = 6 3 8  for Q=6850,  
which is the  largest observed value. (The actual  
number  of values of Q<2000  is 115; the  difference 
with the  N just  ment ioned is typical  of the accuracy 
of equat ion (1). 

The number  of observed lines below 2000 and 6850, 
respectively, is 12 and 28, which is 10% and 4½% of 
the  corresponding N. These low percentages might  
still be compatible with a good rel iabi l i ty  if the  actual  
discrepancies were low. The la t te r  are listed in Table 4, 
together  with some values of the  average expected 
discrepancy A given in this case by 

A = 1/(0-00138~/Q+0"0173). 

A comparison between the  two shows t h a t  for most  
observed lines the  agreement  is not  at  all bet ter  t han  
could be expected for an a rb i t ra ry  or thorhombic  uni t  
cell of similar size.:~ 

Table 4. Observed values of Q and discrepancies for an 
indexed pattern (Sharan, 1959) 

Qo Qo-Qc A Qo Qo-Qc A 
197 - 3 13.5 2490 - 6 
287 -- 1 2811 9( -- 7)$ 
494 --2 3057 --9 5.4 
718 2 3572 -- 12 
790 -- 2 3765 + 1 
882 -- 6 4527 + 3 
999 7 8.2 4869 -- 7 

1107 11 5540 --6 
1477 11(±5)$ 5841 9(-- 1)$ 
1565 10 6037  11(--5)$ 
1641 7 6309 11 4-0 
1821 3 6597 3 
2023 --1 6.3 6857 --9 
2263 --11(--5)$ 

I t  should perhaps be stressed t h a t  this fact  does 
not  prove t h a t  the  proposed uni t  cell is wrong. How- 
ever, Sharan 's  s t a t ement  t h a t  ' the  va l id i ty  of the  
lat t ice constants  is apparen t  from the  good agreement  
between sin e 0o and sin e Oc' proves t h a t  the  implicat ions 

$ For the higher angles, the agreement is indeed so much 
worse than the expectation, that we were led to examine the 
indices in detail. It  turned out that 5 large discrepancies can 
be substantially reduced, as exemplified by the line Q--1477 
for which no less than 3 triplets (014, 241, 332) yield smaller 
discrepancies than the one given by Sharan. 
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of the term 'good agreement '  have n o t  been realized 
by this author  nor, for tha t  mat ter ,  by  the authors of 
quite a few other papers containing similar indexings 
and similar  s tatements.  
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Fig. 1. Ac tua l  discrepancies for an indexed pa t t e rn  and 
expec ted  d iscrepancy AI for a false uni t  cell (cf. Table  4). 

The under lying misconception is probably  t h e  idea 
tha t  the agreement  is good when the discrepancies 
do not exceed the exper imental  errors. I t  is true tha t  
such an agreement  is sufficient when these errors are 
small  compared with A for a large number  of observed 
lines. If, for instance, the error l imit  is equal to 0-1A, 
(A being defined for a given Bravais  type and a certain 
size of uni t  cell since it  depends chiefly on V*), an 
a rb i t ra ry  uni t  cell of this type  and size has a chance 
of 1 -  exp ( -  0"1) ~ 0.1 of yielding a discrepancy 
smaller  t han  the expected error l imit ,  for one ob- 
served line. The chance of obtaining the same qual i ty  
of fi t  for, say, 20 lines is, therefore, 10 -20. Actually,  
each line has a different ratio of error l imit :  A, because 
the two tend to va ry  in opposite directions with 0. 
Anyhow, it will be clear tha t  the presence of some 20 
consecutive lines each having a small  value for tha t  
ratio pract ical ly  excludes the existence of a false 
uni t  cell of the assumed size. 

In  Sharan 's  case, we found in the same way tha t  the 
combined probabi l i ty  for all discrepancies not to 
exceed the error l imit  is about  0.01. (The first 3 lines 
were excluded because there are 3 parameters ;  Q = 790 
was excluded as a probable second order of the first  
line. The error l imi t  was set as closely as the ~actual 
discrepancies permit ,  namely  at 12 beyond, and at  8 
below, Q =  1000.) Now there are hundreds  of choices 
possible for the indices of the three parameter-  
determining lines, even with the restriction of a l imi t  
for the cell volume.~ Hence the existence of a false 
unit  cell yielding an agreement  at least s imilar  to 
Sharan 's  result  is fair ly certain. If, furthermore,  the  
exper imental  errors are real ly as large as the discrep- 
ancies allowed by Sharan, nei ther  the indexing method  
he used nor any  other method will be able to distin- 
guish between false and true uni t  cells. 

As a conclusion, we m a y  say tha t  i t  is not sufficient 
to obtain a good agreement  with respect to errors. 
A reliable indexing should have a substant ia l  n u m b e r  
of discrepancies much smaller  than  the corresponding 
values of 2 .  If  this should leave some weak lines 
unexplained,  the chance of a second phase responsible 
for these lines is usual ly far greater than  the chance 
of existence of a false uni t  cell fulfill ing the criterion 
just  mentioned. 

The author wishes to thank  Miss M. van  Roon and 
Miss E. Brouns for their  assistance in calculating the  
data  of Table 3. 
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t A precise eva lua t ion  of the  probabi l i ty  of the  'false un i t  
cell hypothes is ' ,  as alluded to in the  in t roduct ion,  wou ld  
involve a separa te  calculat ion of A for each choice. Many  
choices, in the present  case, would give uni t  cells smaller  t han  
Sharan 's ;  for these, the  combined chance of success would  be  
much  smaller than  the  above  figure 0.01. I-Iowever, even in 
a range of cell vo lumes  within ± 200/0 from tha t  of Sharan,  
the  n u m b e r  of choices is a l ready of the  order of 100. 


